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ABSTRACT 
 

 

Red-bed soft rocks are commonly found in the bank slopes of reservoirs in southwestern China.
The macroscopic mechanical behavior of red-bed soft rock is closely related to its microscopic
particle structure. When studying the physical mechanism of landslide and collapse of red-bed soft 
rock slope, it is necessary to pay attention to the variation of its microstructure. Both CT scanning
and optical microscope can observe the microscopic particle structure of the red-bed soft rock. 
However, quantitative analysis methods for these microscopic observation images are still rare. In
this study, an optical microscope is used to observe a series of sections of the red-bed soft rock in 
the Three Gorges reservoir area. The image recognition method based on edge detection is adopted 
to extract the particle structure of the red-bed soft rock section from its microscopic image.
A comparative analysis of various edge detection operators reveals that the Canny operator yields
the most distinct particle contours with minimal distortion, effectively preserving the original
morphology of particles and cement. Furthermore, a non-regular-shaped particle size 
representation is defined to statistically analyze the particle sizes of red-bed soft rocks. The 
heterogeneity index calculated using grain size difference was used to quantitatively evaluate the
degree of heterogeneity in the microstructure of red-bed soft rock. Comparing the observed images
and calculated rock particle data showed that this index accurately reflects the micro-geometric 
heterogeneity of the microstructure images. These findings provide a method for the quantitative
analysis of the microstructure of red-bed soft rocks, offering valuable insights into their
mechanical behavior. 
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geotechnical materials on the basis of reproducing the
microstructure of geotechnical materials. Especially
with the proposal and wide application of the grain-
based model (GBM) (Hofmann et al., 2015; Liu et al.,
2018; Wang and Cai, 2018) researchers in rock
mechanics are increasingly concerned with numerical
modeling from the characteristics of rock
microstructure. The GBM method approximates the
real rock grain structure by combining regular balls or
blocks to generate different shapes in the simulation.
Certainly, the initial challenge of conducting such
precise modeling lies in determining the details of
the rock's grain structure, which necessitates the
quantitative characterization of its microstructure.  

Advancements in X-ray diffraction, scanning
electron microscopy, computed tomography (CT), and
other microscopic observation techniques have
facilitated the study of the mechanics and deformation
processes of rocks at the grain structure and mineral
component level. This makes it possible to establish the
relationship between the microstructural characteristics
and the macroscopic mechanical properties. Zhao et al.
(2022) employed Acoustic Emission (AE) surveillance

1. INTRODUCTION 

Red-bed soft rock is a unique type of rock
frequently encountered in engineering projects in the
southwestern region of China, and it is susceptible to
softening and disintegration when interacting with
water (Zhang et al., 2022). The mechanical properties
of red-bed soft rocks directly affect the stability of
engineering structures (Vlastelica et al., 2018; Knopp
et al., 2022; Bilen et al., 2021). Many natural disasters, 
such as landslides and collapses, often occur in red-bed
soft rock areas, causing huge economic and even life
losses (Miščević et al., 2011; Miščević et al., 2020). 
With the development of the world economy and the
need for infrastructure construction, the number and
scale of projects in red-bed soft rock areas have been
further increased. Because the mechanical properties of
the rock mass can also be regarded as a reflection of its
microstructure response to the load (Kazerani, 2013), 
the observation and analysis of microstructure are
particularly prominent to better grasp the mechanical
properties of red-bed soft rocks. 

 The Particle Flow Code (PFC) can be used to
simulate the macroscopic mechanical properties of
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and computed tomography (CT) scanning to assess the 
progression of rock damage throughout the loading 
phase. Ding et al. (2003) measured the width of two 
CT-scale cracks in the rock at different stress stages by 
CT scanning the internal cracks of the rock. 

Although various techniques, including CT 
scanning and optical microscopy, have been used to 
capture the microstructural features of rocks, 
quantitative analysis of these microscopic images 
remains a challenge (Goral et al., 2020). As pointed 
out by Zhao et al. (2023), CT scanning technology can 
reveal particle structures. However, this technology 
requires samples of specific sizes to achieve 
high- resolution imaging. Additionally, the analysis is 
easily influenced by subjective factors such as 
observer experience and fatigue. This makes it 
difficult to quantitatively analyze the microstructure of 
red-bed soft rocks. Consequently, despite 
advancements in imaging technology, extracting and 
quantitatively analyzing microstructural information 
from these images continues to be an active area of 
research. 

Beyond merely extracting grain structures from 
microscopic images of red-bed soft rocks, it is equally 
important to conduct an accurate evaluation of these 
microstructures. Such an evaluation is essential for 
comprehending the microscopic traits of rocks. 
Multiple heterogeneity models including the uniform, 
Weibull, Gaussian, and Lorentz distribution models 
have been employed to investigate rock microstructure 
(Breithaupt et al., 2021; Wang et al., 2014; Zhao and 
Zhou, 2020). For instance, Liu et al. (2004) used the 
Weibull distribution model to characterize the 
heterogeneity of rocks and validated the model's 
accuracy through numerical simulation. 

Therefore, this study investigates the quantitative 
analysis method of the microstructure of red-bed soft 
rocks in the Three Gorges Reservoir area in terms of 
both extraction and evaluation of the particle structure. 
Four edge detection algorithms were used to extract 
the grain structure from the microscopic images of 
red-bed soft rock, and the extraction accuracy of 
different edge detection algorithms was compared. 
The particle size of the red-bed soft rock was 
statistically analyzed. The heterogeneity index of the 
rocks was calculated based on the difference in 
particle size. The heterogeneity of the grain structure 
of the red-bed soft rock was quantitatively evaluated. 
The results can provide a theoretical basis for an 
in- depth understanding of the microscopic 
mechanisms of deformation and damage in red-bed 
soft rocks. 

 
2. IMAGE RECOGNITION OF 

MICROSTRUCTURE 

Extraction and recognition of rock 
microstructure is a complex task. Using image 
recognition to obtain rock grain structure features can 
save a great deal of time in manual processing. Several 
software and algorithms are available to extract 

fractures and pores (Li et al., 2018). However, there is 
a lack of research on the extraction of the complete 
grain structure. In this section, the grain structure 
under polarized light microscopy is converted into a 
binary image through a series of operations. The 
theory of edge detection is used to extract the edges of 
the grain structure. 

 
2.1. SAMPLE PREPARATION 

The sampling site was located at the Majiagou 
landslide in Pengjiapo Village, Zigui County, Hubei 
Province, within the Three Gorges reservoir area. 
Rock samples collected at the site were drilled with 
a rock coring machine. The two end faces of the rock 
samples were cut and smoothed with a rock cutting 
machine. The samples were then polished and 

 
Fig. 1 Red-bed soft rock samples. 

processed into standard samples with a diameter of 
50 mm and a height of 25 mm (Fig. 1). 

To obtain a clear image of the microstructure, 
a representative flat section is taken from the surface 
of the sample for microstructure observation. Before 
microscopic observation, thin rock sections are first 
made (Fig. 2). The Leica DM750P polarizing 
microscope (Fig. 3) is used to observe the mineral 
grain structure and the cementation between minerals. 

 
2.2. EDGE DETECTION METHOD FOR 

MICROSTRUCTURE 

The edge of an image is one of its most basic 
features (Xie et al., 2020), representing the area where 
local brightness changes are most significant. The two 
most prominent aspects of this change are the rate of 
change and the direction, expressed by the gradient 
and direction, respectively (Cheng and Cui, 2008). 
The gradient is a vector, and its magnitude is measured 
by the amount of change per unit distance.Its direction 
is the one in which the equipotential surface changes 
the  fastest. This direction is perpendicular to the 
equipotential surface. 

Edge detection is essential to computer vision 
and image processing, providing vital information for 
subsequent work such as image recognition (Jing et 
al., 2022). The basic idea of edge detection, as the 
basis of the digital image processing process, is to 
emphasize the local edges in an image by utilizing 
edge enhancement operators. This algorithm defines 
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Fig. 2 Red-bed soft rock section. Fig. 3 Polarized light microscope. 

edge features based on pixel characteristics and identifies a set of edge points by applying a threshold. The 
boundary information of an image object can be used for image analysis, filtering, target recognition, and further 
image processing. Common edge detection operators include the Roberts, Sobel, Prewitt, and Canny operators. 

 
(1) Roberts edge detection operator 
The Roberts operator is an operator that uses a local difference operator to detect edges.  This operator 

approximates the gradient magnitude to find edges by utilizing differences in intensity between diagonally 
adjacent pixels (Kang et al., 2008).  

For quick and easy calculation of the gradient magnitude, an approximate formula can be used.  
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(2) Sobel edge detection operator 
The Sobel operator is mainly a weighting algorithm using the above and below, left and right neighbours of 

a pixel point. The algorithm used for the Sobel edge operator is a weighted average followed by a differentiation 
operation, which approximates the first-order derivative using differences (Li et al., 2012). The mathematical 
expression for this operation is as follows: 
 

𝛥௫𝑓ሺ𝑥,𝑦ሻ ൌ ሾ𝑓ሺ𝑥-1,𝑦൅1ሻ൅2𝑓ሺ𝑥,𝑦൅1ሻ ൅ 𝑓ሺ𝑥൅1,𝑦൅1ሻሿ 
                     െ ሾ𝑓ሺ𝑥-1,𝑦-1ሻ൅2𝑓ሺ𝑥,𝑦-1ሻ ൅ 𝑓ሺ𝑥൅1,𝑦-1ሻሿ                                                                                                   (2) 

 

(𝛥௬𝑓ሺ𝑥,𝑦ሻ ൌ ሾ𝑓ሺ𝑥-1,𝑦-1ሻ൅2𝑓ሺ𝑥-1,𝑦ሻ ൅ 𝑓ሺ𝑥-1,𝑦൅1ሻሿ 
                      െ ሾ𝑓ሺ𝑥൅1,𝑦-1ሻ൅2𝑓ሺ𝑥൅1,𝑦ሻ ൅ 𝑓ሺ𝑥൅1,𝑦൅1ሻሿ                                                                                             ሺ3) 

 
(3) Prewitt edge detection operator 
The Prewitt operator detects edges by using the principle that the grey level difference between the 

neighbouring points of a pixel reaches an extreme value at the edge. Prewitt combines local averaging and 
directional differencing by first averaging the filters and then applying directional differencing (Zhou et al., 2019). 
The mathematical expression for this operation is as follows: 

 

𝛥௫𝑓ሺ𝑥,𝑦ሻ ൌ ሾ𝑓ሺ𝑥 ൅ 1,𝑦 ൅ 1ሻ ൅ 𝑓ሺ𝑥,𝑦 ൅ 1ሻ ൅ 𝑓ሺ𝑥 െ 1,𝑦 ൅ 1ሻሿ 
                     െ ሾ𝑓ሺ𝑥 ൅ 1,𝑦 െ 1ሻ ൅ 𝑓ሺ𝑥,𝑦 െ 1ሻ ൅ 𝑓ሺ𝑥 െ 1,𝑦 െ 1ሻሿ                                                                        (4) 

 

𝛥௬𝑓ሺ𝑥,𝑦ሻ ൌ ሾ𝑓ሺ𝑥 െ 1,𝑦 െ 1ሻ ൅ 𝑓ሺ𝑥 െ 1,𝑦ሻ ൅ 𝑓ሺ𝑥 െ 1,𝑦 ൅ 1ሻሿ 
                     െ ሾ𝑓ሺ𝑥 ൅ 1,𝑦 െ 1ሻ ൅ 𝑓ሺ𝑥 ൅ 1,𝑦ሻ ൅ 𝑓ሺ𝑥 ൅ 1,𝑦 ൅ 1ሻሿ                                                                          (5) 

 
(4) Canny edge detection operator 
In 1986, John Canny pioneered the Canny edge detection algorithm, aiming for optimal detection by focusing 

on the best signal-to-noise ratio, localization accuracy, and one-sided response criteria (Canny, 1986). The specific 
implementation steps are as follows: 

(Ⅰ) Apply a Gaussian filter to smooth the image and reduce noise. 
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𝐺ሺ𝑥,𝑦ሻ ൌ 𝑓ሺ𝑥,𝑦ሻ𝐻ሺ𝑥,𝑦ሻ                                        (7) 
 

Where H(x, y) is the Gaussian filter function, f(x, y) is 
the image data, 𝜎 denote the standard deviation. 

(Ⅱ) Pixel gradients and directions are calculated 
using first-order differential operators. 

The gradient magnitude as well as the direction 
angle of G(x, y) is calculated by the following 
equation: 
 

𝜑ሺ𝑥,𝑦ሻ ൌ ඥሺ𝐺௫ሻଶ ൅ ሺ𝐺௬ሻଶ                                     (8) 
 

𝜃ఝ ൌ 𝑎𝑟𝑐𝑡𝑎𝑛ሺ
ீೣ
ீ೤
ሻ                                                    (9) 

 
(Ⅲ) Suppression of non-maximum gradients is 

applied. Only the point with the largest local gradient 
is kept while the others are set to zero to obtain edges. 

(Ⅳ) The double threshold algorithm is used to 
determine the edge points. Setting a high threshold 
filters out false edges in the target contour, while a low 
threshold helps connect broken edges, achieving 
accuracy tuning. 

(Ѵ) Isolated weak edge suppression. 
 

2.3. MICROSTRUCTURE EDGE EXTRACTION 
RESULTS 

After acquiring the image of the red-bed soft 
rocks by polarized light microscope, the 
microstructure edge extraction scheme is shown in 
Figure 4.  

To enhance image contrast, the microscope-
scanned images of the red-bed soft rocks were pre-
processed. The pre-processing includes the following 
steps: Firstly, grey scale processing is applied to the 

target image to significantly increase image contrast. 
Gaussian filtering is used to effectively suppress noise, 
sharpen particle boundaries, and smooth the image 
while blurring it to a lesser extent than mean filtering. 
Binarization converts grayscale pixel values in the 
image to just two states: 0 and 255, resulting in an 
image composed only of black and white to highlight 
the boundaries of transparent particles (Cheng and 
Ding, 2019; Liu and Liu, 2013; Vincent, 1986). 

The image of the thin sections of rock shown in 
Figure 2 under microscope scanning is shown in 
Figure 5(a). After preprocessing, a binary image is 
obtained, as shown in Figure 5(b). It should be noted 
that the numbers in the figure represent pixel 
coordinates, which are used to locate and mark feature 
points or regions in the image. Pixel coordinates are 
commonly used for image analysis and feature 
extraction. The processed image is then subjected to 
four commonly used edge detection operator methods 
to detect the image edges. It can be seen from Figure 5 
that the edges detected by the Roberts operator show a 
large amount of noise, although it can detect the 
approximate outline. Notably, not many continuous 
edges are visible, indicating a significant loss of edge 
information. The principle explains that while the 
local difference method can provide localized 
advantages with high accuracy, it suffers from more 
information loss, which prevents the Roberts operator 
from obtaining the complete boundary contour. The 
Sobel and Prewitt operators excel at preserving 
particle boundary information during differential 
operations after weighted filtering, making more 
particle boundaries identifiable. Nonetheless, the 
gradient operator still faces a severe edge missing 

Fig. 4 Microstructure edge extraction scheme. 



QUANTITATIVE MICROSTRUCTURE CHARACTERIZATION FOR A RED-BED SOFT ROCK IN THE … 

 

179

 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 5 Results of edge structure extraction from the images of rock microstructure. (a) Original image.  
(b) Binary image. (c) Robert operator edge detection. (d) Sobel operator edge detection.  
(e) Prewitt operator edge detection. (f) Canny operator edge detection. 

problem, and the differential operation amplifies 
unremoved noise, introducing significant noise into 
the results. The Canny operator effectively eliminates 
some pseudo-edges, thereby maximizing the retention 
of the particle structure and yielding a clearer structure 
of the red-bed soft rock. Consequently, the results 
extracted using the Canny operator method prove 
more effective in identifying rock particles compared 
to the other three detection methods. 

From the original image and the results of edge 
extraction by the operator method, it is evident that the 

image recognition method can effectively extract the 
edges of rock microstructures while preserving more 
image details. In the image of red-bed rocks processed 
with the Canny operator, the outline of each particle is 
distinct, the deformation is small, and the outline is 
consistent with that in the original microscopic 
photograph. This well reproduces the original 
appearance of the particles and cements and greatly 
facilitates the quantitative characterization of the 
microstructure in red-bed rocks. 
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(a) (b) 

(c) 

Fig. 6 Microstructure photographed by polarized light microscope. (a) Sample 1. (b) Sample 2. (c) Sample 3.  

3. IMAGE EVALUATION OF MICROSTRUCTURE 

Particle size analysis is an essential aspect of 
rock mechanics research. One objective of particle 
size analysis is to obtain the particle size distribution. 
Particle information on rocks is important for 
understanding the microscopic deformation 
characteristics of rocks. In this section, the 
heterogeneity index, calculated from the difference in 
particle size, is used to quantitatively assess the degree 
of heterogeneity in the microstructure of red-bed soft 
rocks 

 
3.1. PARTICLE SIZE ANALYSIS STATISTICS 

To evaluate the overall microstructure of rocks 
and avoid errors in the evaluation results due to the 
heterogeneity of the same rock, we selected multiple 
sections from different regions of the same rock 
sample for polarized light microscopy observations. 
Specifically, three sections, labeled Sample 1, 2, and 
3, were chosen to ensure a more representative 
analysis of the microstructure. Figure 6 shows the 
microstructure of red-bed soft rocks obtained from 
these sections. 

The magnification of the picture in Figure 6 is 
200 times. It can be seen from the figure that the 
particles of the red-bed soft rocks are loosely 
distributed and discrete. Due to the pressure during 

rock formation, there are adhesions between the 
mineral particles, causing them to be cemented 
together.  

To further understand the mineralogical 
composition of red-bed rocks, X-ray diffraction 
techniques were used for detailed analysis. The results 
(Fig. 7) show that the main minerals of the red-bed soft 
rocks are dominated by quartz and calcite, with a small 
amount of feldspar. 

A polarized light microscope was used to obtain 
images of the particle structure of the red-bed soft 
rocks. A grain size statistics software, Nano Measurer, 
was utilized to acquire the grain size of irregular, non-
spherical particles from the rock microstructure 
images obtained by the polarized light microscope 
(Fig. 8). This program can achieve automatic capture 
of particle information in rock slicing. Once the 
particle information was obtained, the average particle 
size was calculated using the horizontal and vertical 
Feret diameters of the particles, referencing the 
method of Liu et al. (2022). Generally speaking, the 
horizontal and vertical Feret diameters refer to the 
maximum horizontal and vertical cut-line distances of 
the particles. The average particle size of irregular 
particles can be calculated by calculating the average 
value of the horizontal and vertical Feret diameters of 
the particles. 
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Fig. 7 X-ray diffraction results.  

Fig. 8 The horizontal and vertical Feret diameters of the particles  

It should be noted that the method above takes 
incomplete particles at the edges into account when 
calculating the average Feret diameter. The mean 
particle diameter statistics were performed for the 
above three samples, and their particle size 
distribution is shown in Figure 9. Sample 1, has 
a maximum particle diameter of 197.42 μm, 
a minimum particle diameter of 34.87 μm, and an 
average particle diameter of 90.29 μm. The maximum 
particle diameter of Sample 2 is 145.37 μm, the 
minimum particle diameter is 34.87 μm, and the 
average particle diameter is 82.10 μm. The maximum 
particle diameter of Sample 3 is 199.70 μm, the 
minimum particle diameter is 32.85 μm, and the 
average particle diameter is 88.08μm. From Figure 9, 
it can be seen that the particle size distribution is 
relatively uniform and generally follows a normal 
distribution. 

Particle sizes are usually classified as 
nanoparticles (1-100 nm), submicron particles (0.1-
1 μm), micro powder (1-100 μm), fine powder (100-
1000 μm), and coarse particles (>1 mm). According to 
the above particle size distribution statistics, the 
particle size of red-bed soft rocks is generally 
distributed in the interval of 47-132 μm, thus falling 
into the category of micro powder and fine powder. 
Therefore, red-bed soft rocks often collapse due to the 
weakening of their structure caused by particle 
accumulation. 

 
3.2. QUANTITATIVE EVALUATION OF 

HETEROGENEITY 

Differences in particle size are an essential factor 
in the geometric heterogeneity of rocks (Peng et al., 
2019). Differences in particle size in the same rock can 
lead to heterogeneous local deformation, resulting in 
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Fig. 9 Particle size distribution map of red-bed soft rock under a polarized light microscope. 

different failure processes (Hu et al., 2008). Therefore, 
the heterogeneity caused by the difference in particle 
size needs to be considered when studying rock’s 
strength and damage deformation mechanisms. 

The heterogeneity index proposed by (Liu et al., 
2018) remains effective even when there are 
significant variations in mineral grain sizes and the 
average grain sizes of different minerals are similar. 
By comprehensively considering the minimum, 
average, and maximum grain sizes of each mineral to 
estimate grain size differences, it significantly 
enhances its representativeness in measuring 
microstructural heterogeneity. The equation of the 
heterogeneity index is as follows. 

 

𝐻 ൌ
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3𝑚
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                                      (10) 
In the equation, d is the model average crystal 

particle size, m is the number of minerals contained in 
the rock sample, H is the heterogeneity index, di1, di2, 
and di3 are the minimum particle size, the average 
particle size, and the maximum particle size of the ith 
mineral particle respectively. 

 Calculating the heterogeneity index of a rock 
using the formula above requires the maximum and 
minimum particle sizes of each mineral for the average 
value. In most cases, such detailed mineral 
information is difficult to obtain. Suppose we consider 
a rock as a conglomeration of many mineral particles. 
Therefore, the above equation can be simplified by 
taking m=1. 
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 (11) 

To quantitatively evaluate the degree of 
heterogeneity of the microstructure of red-bed soft 
rocks, this study employs the aforementioned method 
to calculate the heterogeneity index based on particle 
size differences. The calculation results are shown in 
Table 1 below. 

As shown in Figure 9, Sample 1 exhibits distinct 
particle sizes with obvious disparities, whereas 
Sample 2 shows similar particle sizes with minor 
variations. Consequently, the heterogeneity indices, 
from highest to lowest, are Sample 1, Sample 3, and 
Sample 2, aligning with the heterogeneity index 
calculation results. Therefore, the heterogeneity index 
calculated by the particle size difference can 
quantitatively evaluate the heterogeneity degree of the 
microstructure of red-bed soft rocks. 
 
CONCLUSIONS 

Through microscopic observation and 
microstructure analysis of red-bed soft rocks taken 
from the Three Gorges reservoir area, the following 
main conclusions were obtained: 
1. The particle structure of the red-bed soft rocks 

was extracted from their thin section microscopic 
images using the four edge image detection 
operator methods. It is shown that the outline of 
each particle in the image of red-bed rocks 
processed with the canny operator is clear and less 
deformed, which is consistent with the outline in 

Table 1 Calculation table of heterogeneity index. 

Sample Sample 1 Sample 2 Sample 3 
H 0.6001 0.4503 0.5671 
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the original microscopic photograph. The edge 
detection extraction result from the Canny 
operator well reproduces the original appearance 
of the particles and cement, which indicates canny 
operator method is suitable for the extraction of 
rock particle morphology. 

2. A statistical analysis of the particle size of red-bed 
soft rocks was carried out by defining the particle 
size representation of irregular shapes. The degree 
of heterogeneity of the microstructure of the 
red- bed soft rock was quantified using the index 
of particle size heterogeneity. The calculated 
results were compared with the statistical analysis 
of particle size of red-bed soft rocks in polarized 
light micrographs. It is shown that the 
heterogeneity index can well reflect the 
micro- geometric heterogeneity of microstructure 
images and provide a method for quantitatively 
analyzing the microstructure of red-bed soft 
rocks. 
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